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1. Introduction

Supersymmetric solutions of D = 10 and D = 11 supergravity that contain AdS factors

are dual to superconformal field theories (SCFTs). It is therefore of interest to study

the generic geometric structure of such solutions and, in particular, to use this insight to

construct new explicit solutions.
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The most general supersymmetric solutions of type IIB supergravity with an AdS3

factor and with only the five-form flux non-trivial were analysed in [1]. These solutions can

arise as the near-horizon geometry of configurations of D3-branes, preserve 1/8-th of the

supersymmetry and are dual to two-dimensional N = (0, 2) superconformal field theories.

Similarly, in [2] the most general supersymmetric solutions of D = 11 supergravity with an

AdS2 factor and a purely electric four-form flux were analysed. These solutions can arise

as the near-horizon geometry of configurations of M2-branes, also preserve 1/8-th of the

supersymmetry and are dual to superconformal quantum mechanics with two supercharges.

We shall summarise the main results of [1, 2] in section 2 below. What is remarkable

is that the internal manifolds in each case have the same geometrical structure. For the

type IIB AdS3 solutions, locally the seven-dimensional internal manifold Y7 has a natural

foliation, such that the metric is completely determined by a Kähler metric on the six-

dimensional leaves. For the D = 11 AdS2 solutions, locally the metric on the internal

manifold Y9 is again completely determined by a Kähler metric on, now, eight-dimensional

leaves. Both (2n+2)-dimensional Kähler metrics ds2
2n+2 satisfy exactly the same differential

condition

¤R − 1
2R2 + RijR

ij = 0 (1.1)

where R and Rij are the Ricci-scalar and Ricci-tensor, respectively, of the metric ds2
2n+2.

In each case, to obtain an AdS3 or AdS2 solution one requires R > 0.

It is worth noting the similarities with Sasaki-Einstein (SE) metrics. Recall that five-

dimensional SE metrics, SE5 give rise to supersymmetric solutions of type IIB supergravity

of the form AdS5 × SE5, while seven-dimensional SE metrics, SE7 give rise to supersym-

metric solutions of D = 11 supergravity of the form AdS4 × SE7. All SE metrics have a

canonical Killing vector which defines, at least locally, a canonical foliation, and the SE

metric is completely determined by a Kähler-Einstein metric on the corresponding leaves.

There has been some recent explicit constructions of local Kähler-Einstein metrics that

give rise to complete SE metrics and we will show that they can be adapted to produce

Kähler metrics that satisfy (1.1) and hence give rise to new AdS3 and AdS2 solutions.

After an analytic continuation, the generic AdS3 and AdS2 solutions discussed in [1, 2]

give rise to generic supersymmetric solutions with S3 and S2 factors preserving 1/8-th

of maximal supersymmetry. In particular the solutions are built from the same Kähler

geometry satisfying (1.1), but now with R < 0. Such “bubble solutions” generalise the

1/2 supersymmetric bubble solutions of [3] (1/4 supersymmetric bubble solutions in type

IIB were analysed in [4, 5]) and generically have an R × SO(4) or R × SO(3) group of

isometries. Depending on the boundary conditions, the 1/8-th supersymmetric bubbles

can describe 1/8-th BPS states in the maximally SCFTs, or other BPS states in SCFTs

with less supersymmetry. Note that recently an analysis of 1/8-th supersymmetric bubbles

in type IIB supergravity with additional symmetries was carried out in [6] and, most

recently, AdS2 and bubble solutions of D = 11 supergravity preserving various amounts

of supersymmetry were analysed in [7]. The constructions that we use for the AdS3 and

AdS2 solutions, that we outline below, also lead to new explicit bubble solutions.

We will present three constructions of Kähler metrics satisfying (1.1) which lead to
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new AdS and bubble solutions. The first construction is directly inspired by the construc-

tions of SE metrics in [8, 9]. Following [10], the idea is to build the local Kähler metric

from a 2n-dimensional Kähler-Einstein metric ds2(KE2n). To construct complete met-

rics on the internal space Y2n+3 we will usually assume that the 2n-dimensional leaves on

which ds2(KE2n) is defined extend to form a compact Kähler-Einstein space KE2n. One

might then try to similarly extend the Kähler metrics ds2
2n+2 to give non-singular metrics

on a compact space which is an S2 fibration over KE2n. However, this is not possible.

Nonetheless, as we show, this kind of construction can give rise to complete and compact

metrics on Y2n+3. This is precisely analogous to the construction of Sasaki-Einstein mani-

folds presented in [8, 9]. For the six-dimensional case, we show that we recover the AdS3

solutions of type IIB supergravity that were recently constructed in [11]. On the other

hand, the eight-dimensional case leads to new infinite classes of AdS2 solutions of D = 11

supergravity.

In [11] it was shown that by choosing the range of coordinates differently, one obtains

AdS3 solutions with non-compact internal spaces. These solutions were interpreted as

being dual to four-dimensional N = 1 SCFTs, arising from five-dimensional Sasaki-Einstein

spaces, in the presence of a one-dimensional defect. Similarly, we can also choose the range

of the coordinates in the new AdS2 solutions presented here so that they also have non-

compact internal spaces. As we discuss, these solutions are dual to three-dimensional

N = 2 SCFTs arising from seven-dimensional Sasaki-Einstein spaces, in the presence of a

point-like defect.

We will then show that this first construction of Kähler metrics also gives rise to

supersymmetric bubble solutions. Indeed, remarkably, we find that we recover the uplifted

versions of the AdS single-charged “black hole” solutions of minimal gauged supergravity

in D = 5 and D = 4. Recall that these BPS solutions have naked singularities and hence

were christened “superstars” in [12, 13]. These solutions are special cases of more general

superstar solutions obtained by uplifting three- and four-charged AdS “black holes” in D =

5 and D = 4 gauged supergravity, respectively. We identify the underlying Kähler geometry

for these general solutions which we then employ to carry out our second construction of

supersymmetric AdS3 and AdS2 solutions. The Kähler geometries are toric and hence this

construction is analogous to the construction of SE metrics of [14] (see also [15]).

The third construction of Kähler metrics satisfying (1.1) that we shall present is to

simply take the metric to be a direct product of Kähler-Einstein metrics. This gives rise to

rich new classes of AdS3 and AdS2 solutions. A special case of the AdS3 solutions is that

given in [16], describing D3-branes wrapping a holomorphic curve in a Calabi-Yau four-fold,

while a special case of the AdS2 solutions corresponds to the solution in [17], describing

M2-branes wrapping a holomorphic curve in a Calabi-Yau five-fold. The construction also

gives rise to infinite new bubble solutions.

The plan of the rest of the paper is as follows. We begin in section 2 by reviewing the

construction of [1, 2]. In section 3 we describe the construction using S2 fibrations over

KE manifolds. In section 4 we show that this construction gives rise to bubble solutions

that are the same as the uplifted single charged superstars. In section 5, we determine the

Kähler geometry underlying the multiple charged superstars and then use this to construct
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infinite new class of AdS solutions. In section 6 we describe the construction of AdS and

bubble solutions using products of KE metrics. Section 7 briefly concludes.

2. Background

2.1 AdS3 in IIB and AdS2 in D = 11

The generic AdS3 and AdS2 solutions discussed in [1, 2] are constructed as follows. In each

case, one assumes the metric is a warped product

ds2 = L2e2A
[

ds2(AdSd) + ds2(Y2n+3)
]

(2.1)

where we normalise such that ds2(AdSd) has unit radius and L is an overall scale factor

that we will sometimes normalise to one. Let ds2
2n+2 be a 2n+2-dimensional Kähler metric

satisfying (1.1).

The generic 1/8-th supersymmetric AdS3 solution of type IIB supergravity with non-

trivial five-form is then given by taking the metric on Y7 to have the form [1]

ds2(Y7) = 1
4(dz + P )2 + e−4Ads2

6 (2.2)

where dP = R (the Ricci form on ds2
6). The warp factor is given by e−4A = 1

8R and hence

we must have R > 0. The five-form flux is given by

F5 = L4(1 + ∗) vol(AdS3) ∧ F (2.3)

with

F = 1
2J − 1

8d
[

e4A(dz + P )
]

(2.4)

Using the fact that the Ricci-form of the Kähler metric ds2
2n+2 satisfies

∗2n+2R =
R

2

Jn

n!
− Jn−1

(n − 1)!
∧R (2.5)

we can rewrite the five-form flux as

F5 = L4 vol(AdS3) ∧ F +
L4

16

[

J ∧R ∧ (dz + P ) +
1

2
∗6 dR

]

(2.6)

since F is clearly closed, we see that F5 is closed as a result of the condition (1.1). The vec-

tor ∂z is Killing and preserves the five-form flux. The solutions are dual to two-dimensional

conformal field theories with (0, 2) supersymmetry. Since only the five-form flux is non-

trivial, solutions of this type can be interpreted as arising from the back-reacted configu-

rations of wrapped or intersecting D3-branes. For example, we shall show that there are

such solutions that correspond to D3-branes wrapping holomorphic curves in Calabi-Yau

four-folds.

The generic 1/8-th supersymmetric AdS2 solution of D = 11 supergravity with purely

electric four-form flux is given by taking the internal metric [2]

ds2(Y9) = (dz + P )2 + e−3Ads2
8 (2.7)
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with dP = R. The warp factor is e−3A = 1
2R and so again we must take R > 0. The

four-form flux is given by

G4 = L3 vol(AdS2) ∧ F (2.8)

with

F = −J + d
[

e3A(dz + P )
]

(2.9)

The four-form G4 is clearly closed. Using (2.5) we have

∗G4 =
J2

2
∧R ∧ (dz + P ) +

1

2
∗8 dR (2.10)

and hence the equation of motion for the four-form, d ∗ G4 = 0, is satisfied as a result of

(1.1). Again, the vector ∂z is Killing and preserves the flux. These solutions are dual to

conformal quantum mechanics with two supercharges. The fact that the four-form flux is

purely electric means such solutions can be interpreted as arising from the back-reacted

configurations of wrapped or intersecting M2-branes. For example, as we will see, there are

such solutions that correspond to M2-branes wrapping holomorphic curves in Calabi-Yau

five-folds.

Note for both cases that if we scale the Kähler metric by a positive constant it just

leads to a scaling of the overall scale L of the D = 10 and D = 11 solutions.

Finally, we note that a particular class of the D = 11 solutions can be related to the

type IIB solutions. Suppose that there is a pair of commuting isometries of the Kähler

metric ds2
8 such that globally they parametrise a torus T 2 and the nine-dimensional internal

manifold is metrically a product T 2 × M7. By dimensional reduction and T-dualising on

this T 2 we can obtain a type IIB solution with an AdS2 factor. In fact, as we show in the

appendix, one actually obtains a type IIB solution with an AdS3 factor, precisely of the

form (2.2)–(2.4).

2.2 Bubble solutions

The AdS solutions discussed thus can in general be analytically continued to describe

stationary geometries with S3 and S2 factors in type IIB and D = 11 supergravity re-

spectively. Such “bubble solutions” again preserve 1/8-th of the maximal supersymmetry

and generalise the 1/2 supersymmetric bubble solutions of [3]. Generically they have an

R× SO(4) or R× SO(3) group of isometries. Depending on the boundary conditions, they

can correspond to 1/8-th BPS states in the maximally SCFTs, or other BPS states in

SCFTs with less supersymmetry.

To obtain the type IIB bubble solutions one adapts the analysis of [1], by replacing

the AdS3 factor with an S3. The local form of the metric is given by

ds2 = L2e2A

[

−1

4
(dt + P )2 + ds2(S3) + e−4Ads2

6

]

(2.11)

where ds2
6 is, as before, a Kähler metric with Ricci form R = dP satisfying (1.1). Note

that now we have a time-like Killing vector ∂t. The warp factor is given by e−4A = −1
8R

and so now we want solutions with R < 0. The five-form flux becomes

F5 = L4(1 + ∗) vol(S3) ∧ F (2.12)
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with

F = 1
2J + 1

8d
[

e4A(dt + P )
]

(2.13)

The Killing vector ∂t also preserves the five-form flux.

Similarly adapting the analysis of [2] by replacing the AdS2 factor by S2 one can

construct new bubbling 1/8-th supersymmetric solutions of D = 11 supergravity. The

local form of the metric becomes

ds2 = L2e2A
[

−(dt + P )2 + ds2(S2) + e−3Ads2
8

]

(2.14)

with dP = R and the Ricci-form again satisfies (1.1). The warp factor is now e−3A = −1
2R

and so we again want solutions with R < 0. The four-form flux is given by

G4 = L3 vol(S2) ∧ F (2.15)

with

F = −J − d
[

e3A(dt + P )
]

(2.16)

and again it is preserved by the Killing vector ∂t.

3. Fibration constructions using KE
+
2n spaces

In order to find explicit examples of Kähler metrics in 2n + 2 dimensions satisfying (1.1),

we follow [10] and also [8, 9], and consider the ansatz

ds2
2n+2 =

dρ2

U
+ Uρ2(Dφ)2 + ρ2ds2(KE+

2n) (3.1)

with

Dφ = dφ + B (3.2)

Here ds2(KE+
2n) is a 2n-dimensional Kahler-Einstein metric of positive curvature. It is

normalised so that RKE = 2(n + 1)JKE and the one-form form B satisfies dB = 2JKE.

Note that (n + 1)B is then the connection on the canonical bundle of the Kähler-Einstein

space. Let ΩKE denote a local (n, 0)-form, unique up rescaling by a complex function.

To show that ds2
2n+2 is a Kähler metric observe that the Kähler form, defined by

J = ρdρ ∧ Dφ + ρ2JKE, (3.3)

is closed, and that the holomorphic (n + 1, 0)-form

Ω = ei(n+1)φ

(

dρ√
U

+ iρ
√

UDφ

)

∧ ρnΩKE (3.4)

satisfies

dΩ = ifDφ ∧ Ω (3.5)

with

f = (n + 1)(1 − U) − ρ

2

dU

dρ
(3.6)

– 6 –
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This implies, in particular, that the complex structure defined by Ω is integrable. In

addition (3.5) allows us to obtain the Ricci tensor of ds2
2n+2:

R = dP, P = fDφ (3.7)

The Ricci-scalar is then obtained via R = RijJ
ij .

We would like to find the conditions on U such that ds2
2n+2 satisfies the equation (1.1).

It is convenient to introduce the new coordinate x = 1/ρ2 so that

ds2
2n+2 =

1

x

[

dx2

4x2U
+ U(Dφ)2 + ds2(KE+

2n)

]

(3.8)

and

f = (n + 1)(1 − U) + x
dU

dx
(3.9)

R = 4nxf − 4x2 df

dx
(3.10)

We can now show that (1.1) can be integrated once to give

2nf2 + U
dR

dx
= Cxn−1 (3.11)

where C is a constant of integration.

For simplicity, in what follows, we will only consider polynomial solutions of (3.11).

In particular, if U(x) is a k-th order polynomial we have the following indicial equation:

(k − n − 1)(k − n + 1)(2k − n) = 0, which implies that k = n + 1. Thus our problem is to

find polynomials of the form

U(x) =

n+1
∑

j=0

ajx
j (3.12)

satisfying (3.11). Note from (3.9) that the Ricci scalar is given by

R = 4x



n(n + 1) −
n−1
∑

j=0

(n − j)(n − j + 1)ajx
j



 (3.13)

Since R is related to the AdS warp factor, for a consistent warped product we see that the

range of x must exclude x = 0. Furthermore, from (3.8) we must take x > 0 and U(x) > 0.

Our main interest is the six-dimensional (n = 2) and eight-dimensional (n = 3) cases,

which give rise to type IIB and D = 11 solutions respectively. If n = 2, the function U(x)

is cubic and the condition (3.11) implies that

a2
2 − 4a3a1 = 0

a3(1 − a0) = 0

(a0 − 1)(a0 − 3) = 0 (3.14)

The Ricci scalar is given by

R = 8x (3 − 3a0 − a1x) (3.15)

– 7 –
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We have two choices depending on the solution of the second equation of (3.14). The first

is a3 = 0 and hence a2 = 0 with

U(x) = a0 + a1x (3.16)

and either a0 = 1 or a0 = 3. The second choice is a3 6= 0, a0 = 1 and hence a2
2 = 4a3a1

with

U(x) = 1 + a1x + a2x
2 + (a2

2/4a1)x
3 (3.17)

(note that when a1 = a2 = 0 we have R = 0 and so we ignore this case.)

If n = 3 the function U(x) is quartic and the condition (3.11) implies that

a2
3 − 4a4a2 = 0

a4a1 = 0

a1(2 − a0) = 0

a3a1 − 4a4(1 − a0) = 0

(a0 − 1)(a0 − 2) = 0 (3.18)

The Ricci scalar is given by

R = 8x
(

6 − 6a0 − 3a1x − a2x
2
)

(3.19)

Solving the equations (3.18) again leads to two classes of solutions depending on the solution

of the second equation. First we take a4 = 0 which implies a3 = 0 with

U(x) = a0 + a1x + a2x
2 (3.20)

and either a0 = 1, a1 = 0 or a0 = 2. Alternatively we take a4 6= 0, a1 = 0 and hence a0 = 1

and a2
3 = 4a4a2 with

U(x) = 1 + a2x
2 + a3x

3 + (a2
3/4a2)x

4 (3.21)

(note that when a0 = 1, a1 = a2 = 0 we have R = 0 and so we ignore this case.)

For the remainder of this section we will only consider AdS solutions (R > 0), returning

to bubble solutions (R < 0) in the next section. In order that the AdS solutions are globally

defined, in the following we will usually assume that the local leaves in (3.8) with metric

ds2(KE+
2n) extend globally to form a compact Kähler-Einstein manifold KE+

2n and that

the internal manifold Y2n+3 in (2.1) is a fibration over KE+
2n. We could also assume that

x and φ in (3.8) separately describe a fibration over KE+
2n. In particular, if the range of

x is taken to lie between two zeroes of U(x), then, at a fixed point on KE+
2n, (x, φ) can

parametrise a two-sphere (U(x) has to have a suitable behaviour at the zeroes to avoid

conical singularities). Topologically this can then form a two-sphere bundle over KE+
2n

which is just the canonical line bundle KE+
2n with a point “at infinity” added to each

of the fibres. In fact we shall see that in the solutions we discuss this possibility is not

realised and that the metric necessarily has conical singularities at one of the poles of

the two-sphere. However, as we shall also see, in the D = 10 and D = 11 supergravity

solutions, after adding in the extra z-direction, in the resulting spaces Y2n+3 two-sphere

– 8 –
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bundles over KE+
2n (without conical singularities) do appear but where the polar angle on

the sphere is a combination of φ and z.

We will now discuss the six-dimensional (n = 2) and eight-dimensional (n = 3) cases

in turn, corresponding to type IIB AdS3 and D = 11 AdS2 solutions respectively.

3.1 Fibrations over KE+
4 : type IIB AdS3 solutions

For these solutions, the warp factor is given by R = 8e−4A which must be positive. Recall

that we had two choices for the function U(x). First consider the case U(x) = a0 + a1x

with either a0 = 1 or a0 = 3. From (3.8) for a compact Y7 manifold with finite warp factor

we need a finite range of x > 0 between two solutions of U(x) = 0, such that U(x) > 0 (so

that we have the right signature). Since U(x) is linear for this case, it has only one root

and so there are no compact solutions. (In fact, as we discuss later, the case where a0 = 1

corresponds to AdS5 × X5, where X5 is a Sasaki-Einstein manifold.)

We thus consider the second case U(x) = 1 + a1x + a2x
2 + (a2

2/4a1)x
3. We now show

that this gives rise to the family of type IIB AdS3 solutions found in [11]. To compare

with the solutions given in [11] we need to make a number of transformations. First it is

convenient to change parametrization and write a3 = −1/α3, a2 = 2β/α3, a1 = −β2/α3 so

that

U(x) = 1 − x(x − β)2

α3
. (3.22)

The scalar curvature is given by

R =
8β2

α3
x2 (3.23)

and we must choose α > 0 to ensure that R > 0. The metric (2.2) on the internal manifold

is then given by

ds2(Y7) =
1

4

[

dz − 2βx(x − β)

α3
Dφ

]2

+
β2

α3

[

dx2

4xU
+ xU(Dφ)2 + xds2(KE+

4 )

]

(3.24)

Note that this is invariant under simultaneous rescalings of x, α and β. Using this symmetry

we can set

β =
4

3a
, α3 =

256

729a2
(3.25)

Introducing new coordinates y = 4/(9x) and ψ = 3φ + z we can rewrite the metric as

ds2(Y7) =
y2 − 2y + a

4y2
Dz2 +

9dy2

4q(y)
+

q(y)Dψ2

16y2(y2 − 2y + a)
+

9

4y
ds2(KE+

4 ) (3.26)

where Dψ = dψ + 3B, Dz = dz − g(y)Dψ and

q(y) = 4y3 − 9y2 + 6ay − a2

g(y) =
a − y

2(y2 − 2y + a)

(3.27)

The warp factor is simply e2A = y. Using (2.3) and (2.4), we find the five-form flux is

F = −1

4
ydy ∧ dz +

3a

8
JKE (3.28)
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This can now be directly compared with the solution constructed in [11]. We need to take

into account the different normalization conventions for the KE+
4 . This requires rescaling

ds2(KE+
4 ) by a factor of 1/6. Recalling that by definition 3B is the connection on the

canonical bundle of KE+
4 , we see that (3.26) agrees precisely with the metric given in [11].

Furthermore, the expression for the five-form also agrees, again allowing for a difference in

conventions: the five form being used here is −1/4 that of [11].

The regularity of these solutions were discussed in detail in [11]. Restricting y to lie

between the two smallest roots of the cubic q(y), topologically the solutions as written

in (3.26) are U(1) bundles, with fibre parametrised by z, over an S2 bundle, with fibre

parametrised by (ψ, y), over KE+
4 . Note also, as was mentioned above, that the six-

dimensional Kähler leaves parametrised by (x, φ) and KE+
4 appearing in (3.24) are not S2

bundles over KE+
4 as there is necessarily a conical singularity at one of the poles.

3.2 Fibrations over KE+
6 : D = 11, AdS2 solutions

We now discuss the case where n = 3 and Y9 is nine-dimensional and look for AdS2 solutions

to D = 11 supergravity. For these solution the warp factor is given by R = 2e−3A. Recall

that there were two choices for the function U(x). First consider U(x) = a0 + a1x + a2x
2.

Recall again that for a compact Y9 geometry with finite warp factor we need to find a

range of x > 0 between the two roots of U(x) = 0 over which U(x) > 0. Since a0 = 1 or

a0 = 2, this is not possible and thus there are no compact warped product solutions in this

class. (In fact, as we discuss later, the case a0 = 1 corresponds to AdS4 × X7 where X7 is

Sasaki-Einstein.)

We thus focus on the second case for which U(x) = 1+a2x
2 +a3x

3 +(a2
3/4a2)x

4. This

implies R = −8a2x
3. Since we require x > 0, R > 0 we must have a2 < 0 and hence a4 < 0.

It is then useful to redefine a4 = −1/α4, a3 = 4β/α4 and a2 = −4β2/α4, with α > 0, so

that

U(x) = 1 − x2(x − 2β)2/α4 (3.29)

and

R =
32β2

α4
x3 (3.30)

The metric on the internal space Y9 is then given by

ds2(Y9) = (dz + P )2 +
16β2

α4

[

dx2

4U
+ x2U(Dφ)2 + x2ds2(KE+

6 )

]

(3.31)

where P = −4α−4βx2(x − 2β)Dφ. Note that the metric is invariant under simultaneous

rescalings of x, β and α. The roots of U(x) = 0 are given by

x1 = β −
√

β2 + α2 x2 = β −
√

β2 − α2

x3 = β +
√

β2 − α2 x4 = β +
√

β2 + α2
(3.32)

Note that for β2 > α2 we have four real roots and U(x) ≥ 0 for x ∈ [x1, x2] and x ∈ [x3, x4].

Demanding that x > 0, R > 0 we deduce that β2 > α2, β > 0 and x ∈ [x3, x4].
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As in the type IIB case, it is not possible to avoid conical singularities at both x3 and x4

just by adjusting the period of φ. However, we can take an appropriate linear combination

of z and φ and find a smooth compact manifold. To this end, we change coordinates

ψ = 4φ + z (3.33)

It is also convenient to use the scaling symmetry to set

β =
33/2

211/2a
, α4 =

36

222a2
(3.34)

and change variables from x to y = 33/2/(211/2x). In these coordinates the warp factor is

simply

e2A =
2

3
y2. (3.35)

With these changes the metric takes the form

ds2(Y9) =
y3 − 3y + 2a

y3
Dz2 +

4dy2

q(y)
+

q(y)(Dψ)2

y3(y3 − 3y + 2a)
+

16

y2
ds2(KE+

6 ) (3.36)

where Dψ = dψ + 4B, Dz = dz − g(y)Dψ and

q(y) = y4 − 4y2 + 4ay − a2

g(y) =
a − y

y3 − 3y + 2a
.

(3.37)

The conditions β > 0 and β2 > α2 translate into 0 < a < 1. The function U(x) has been

replaced by q(y), which again has four roots y1 < 0 < y2 < y3 < y4, for this range of a.

The condition that x ∈ [x3, x4] translates into y ∈ [y2, y3].

Near a root y = yi we find that the (y, ψ) part of the metric is given by

16

q′(yi)

[

dr2 +
q′(yi)

2

16y3(y3 − 3y − 2a)
(Dψ)2

]

=
16

q′(yi)

[

dr2 + r2(Dψ)2
]

(3.38)

where y − yi = r2. Thus, remarkably, by choosing the period of ψ to be 2π we can avoid

conical singularities at both y = y2 and y = y3. As a consequence we can look for solutions

where the topology of Y9 is a U(1) bundle, whose fibre is parametrised by z, over an eight-

dimensional manifold which is topologically a two-sphere bundle, parametrised by (y, ψ),

over KE+
6 . Furthermore, since by definition 4B is the connection of the canonical bundle

of KE+
6 , the two-sphere bundle is simply the canonical line bundle of KE+

6 with a “point

at infinity” added to each fibre.

In order to check that the U(1) fibration, with fibre parametrised by z, is globally

defined, we need ensure that the periods of d(gDψ) over all 2-cycles of the eight-dimensional

base space are integer valued. The problem is very similar to the type IIB solutions and

we can follow the analysis of [11]. If we let the period of z be 2πl, then we must have

g(y3) − g(y2) = lq, g(y2) = lp/m (3.39)
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for some integers p and q. The integer m is fixed by the choice of KE+
6 manifold: if L is

the canonical line bundle, then m is the largest possible positive integer such that there

exists a line bundle N with L = Nm. Furthermore, if the integers p and q are relatively

prime Y9 is simply connected. These conditions imply that we must choose

a =
mq(2p + mq)

(2p2 + 2mpq + m2q2)
(3.40)

and

l2 =
m2(2p2 + 2mpq + m2q2)

2p2(p + mq)2
(3.41)

Finally, we note that the four-form flux is given by (2.8) with

F =
23/2

33/2

[

3y2dy ∧ dz − 8aJKE

]

(3.42)

It is straightforward to determine the additional conditions imposed by demanding that

the four-form is properly quantised but we shall not do that here.

3.3 Non-compact AdS2 solutions in D = 11 and defect CFTs

Given the solutions (3.36), we can return to the original angular variables φ and z and

complete the squares in a different way, so the eleven-dimensional metric reads

ds2 =
2y2

3
ds2(AdS2) +

32

3
ds2(KE+

6 )

+
32

3

[

Dφ +

(

1

2
− a

4y

)

dz

]2

+
8y2

3q(y)
dy2 +

2q(y)

3y2
dz2

(3.43)

Let us now consider letting the range of y be given by y4 ≤ y ≤ ∞, where y4 is the largest

root of the quartic q(y). Clearly this gives rise to non-compact solutions with AdS2 factors.

These are the analogue of the non-compact AdS3 solutions of type IIB supergravity that

were discussed in section 7 of [18].

Observe that when a = 0, after implementing the coordinate change y2 = 4cosh2 r

and φ′ = 4φ + 2z we obtain

3
8ds2 = cosh2 rds2(AdS2) + dr2 + sinh2 rdz2 + 4

[

ds2(KE+
6 ) + 1

16(dφ′ + 4B)2
]

(3.44)

This is simply the AdS4 × SE7 solution of D = 11 supergravity where SE7 is a seven-

dimensional Sasaki-Einstein manifold. In particular, in the special case that we choose

KE+
6 to be CP 3, we get the standard AdS4 × S7 solution. Note that if SE7 is regular or

quasi-regular, then KE+
6 is a globally defined manifold or orbifold, respectively, while if it

is irregular, KE+
6 is only locally defined.

We next observe that for general a, as y → ∞ the solution behaves as if a = 0 and

hence the solutions are all asymptotic to AdS4 × SE7. By choosing the period of the

coordinate z suitably, we can eliminate the potential conical singularity as y approaches

y4. With this period the non compact solutions are regular: they are fibrations of SE7
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over a four-dimensional space which is a warped product of AdS2 with a disc parametrised

by (y, z).

To interpret these solutions we consider for simplicity the case when SE7 = S7. Now,

there are probe membranes in AdS4×S7 whose world-volume is AdS2×S1. More precisely,

the AdS2 world-volume is located in AdS4 while the S1 is the Hopf fibre of S7. These

configurations preserve 1/16-th of the Minkowski supersymmetry and are a generalisation1

of those studied in [19] corresponding to defect CFTs. It is natural therefore to interpret

our new solutions as the back reacted geometry of such probe branes. One might expect

that the back reacted geometry of such branes to be localised in CP 3, however, in our

solutions the CP 3 is still manifest. Hence our geometries seem to correspond to such probe

membranes that have been “smeared” over the CP 3.

We make a final observation about the a = 1 case, for which q(y) has a double root at

y = 1. By expanding the solution near y = 1 we find that the solution is asymptotically

approaching the solutions discussed in section (6.15) below. In particular, for the special

case when KE+
6 = CP 3, this is the solution found in [17] that describes the near horizon

limit of membranes wrapping a holomorphic H2/Γ in a Calabi-Yau five-fold. Thus, in

this special case, our full non-compact solution, interpolates between AdS4 × S7 and the

solution of [17], while preserving an AdS2 factor. Note that this is entirely analogous to

the discussion of the non-compact type IIB AdS3 solutions discussed in section 7 of [18].

4. Bubbles from fibrations over KE
+
2n and Superstars

We will now use the same local Kähler metrics described at the beginning of section 3 to

construct supersymmetric bubble solutions with S3 factors in type IIB and S2 factors in

D = 11. The key point is simply to consider a different range of the variable x such that

Ricci scalar R is now negative.

4.1 Type IIB solutions from fibrations over KE+
4

We first observe that if we take U(x) = 1 + a1x, with a1 > 0 to ensure that R < 0,

and choose the four-dimensional Kähler-Einstein base, KE+
4 , to be CP 2 we simply recover

the AdS5 × S5 solution. This becomes clear after making the coordinate transformation

φ → φ− 1
2t. More generally by taking the same U but with different choices of ds2(KE+

4 )

metric (note the corresponding leaves need not extend globally to form a compact Kähler-

Einstein space) we can obtain an AdS5 × SE5 solution, where SE5 is any arbitrary five-

dimensional Sasaki-Einstein manifold.

Let us now consider the solutions based on the more general cubic (3.17). Since taking

a2 = 0 returns to the AdS5×SE5 described above, we expect these solutions to correspond

to excitations in the CFT dual of the Sasaki-Einstein solutions. We again must have a1 > 0

to ensure R < 0. It is convenient to rescale the coordinate x so that a1 = 1 (this leads

to an overall scaling of the six-dimensional Kähler metric which can be absorbed into the

1In [20] probe membranes with world-volume AdS2 ×S
1 were also considered but they are not the same

as those being considered here as they preserve 1/4 of the supersymmetry.
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overall scale L of the D = 10 metric) giving

U = 1 + x + a2x
2 + 1

4a2
2x

3. (4.1)

If make the change of coordinate x = 1/(r2 + Q) where Q = −a2/2 we find that the type

IIB metric can be written as

ds2 = −1
4H−2f dt2 + H

[

f−1dr2 + r2ds2(S3)
]

+ ds2(KE+
4 ) + (Dφ + A)2 (4.2)

where

H = 1 +
Q

r2

f = 1 + r2H3

A = 1
2H−1dt. (4.3)

When KE+
4 = CP 2 we see that this is precisely the single-charged AdS5 “black hole”

solution given in [21, 22], uplifted to D = 10 using an S5, as described in [23]. The fact that

we can replace the CP 2 with any KE+
4 is a consequence of the recent result that there is a

consistent Kaluza-Klein truncation to minimal D = 5 gauge supergravity using any D = 5

Sasaki-Einstein space [24]. These D = 10 solutions were interpreted as corresponding to

giant gravitons and were called superstars in [12].

4.2 D = 11 solutions from fibrations over KE+
6

We now start with U = 1 + a2x
2 with a2 > 0. If we choose ds2(KE+

6 ) to be the metric

on CP 3 it is again easy to show that one recovers the AdS4 × S7 solution. More generally

we get AdS4 ×SE7 solutions for arbitrary Sasaki-Einstein seven-manifold SE7 for suitable

different choices of the local metric ds2(KE+
6 ).

As before, solutions based on the more general quartic (3.29) should then correspond

to excitations in the CFT dual of the Sasaki-Einstein solutions. Scaling x so that a2 = 1,

we have

U = 1 + x2 + a3x
3 +

a2
3

4
x4 (4.4)

If we make the change of variable x = 1/(r+Q) where Q = −a3/2 we find that the D = 11

metric can be written as

42/3ds2 = −H−2fdt2 + H2
[

f−1dr2 + r2ds2(S2)
]

+ 4ds2(KE+
6 ) + 4

(

Dφ + 1
2A

)2
(4.5)

where

H = 1 +
Q

r

f = 1 + r2H4

A = H−1dt (4.6)

When KE+
4 = CP 3 this is precisely the supersymmetric single-charged AdS4 “black

hole” discussed in [25], uplifted to D = 11 using an S7 as described in [23]. The fact that

we can replace the CP 3 with any KE+
6 is very suggestive that there is a consistent Kaluza-

Klein truncation to minimal D = 4 gauge supergravity using any D = 7 Sasaki-Einstein

space (thus generalising the result of [24]; see also [26]). These D = 11 solutions were

interpreted as corresponding to giant gravitons and were called superstars in [13].
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5. New AdS solutions from multi-charged superstars

In this section we will derive new AdS solutions from the general three-charged and four-

charged superstar solutions of type IIB and D = 11, respectively. The strategy is to first

identify the Kähler geometry underlying the superstar solutions and then by a judicious

rescaling and change of variables, construct a Kähler metric with positive Ricci scalar and

use this to build the AdS solutions.

5.1 Type IIB three-charged superstars

We start by summarising the three-charge superstar geometry as presented in [23]. If we

relate our time coordinate t to the time coordinate t̃ of that reference by t̃ = 1
2t, we find

that the solution can be put in the bubble form (2.11) with

e4A = DHr4

P =
2

r2DH
∑

i

µ2
i dφi

ds2
6 =

DHr2

f
dr2 + r2

∑

i

Hi(dµ2
i + µ2

i dφ2) +
1

DH
(

∑

i

µ2
i dφi

)2
(5.1)

where with i = 1, 2, 3

Hi = 1 +
Qi

r2
(5.2)

and we have defined

H = H1H2H3

f = 1 + r2H

D =
∑

i

µ2
i

Hi
(5.3)

Furthermore if we write the five-form, F̃5 of [23] as F̃5 = 4F5, then we find2 that it takes

the form (2.12) and (2.13) with

F = 1
8d

[

e4A(dt + P )
]

+ 1
2J (5.4)

where

J = −rdr ∧
∑

i

µ2
i dφi −

r2

2

∑

i

Hid(µ2
i ) ∧ dφi (5.5)

It is easy to see that this form is closed. To see that it is indeed a Kähler form corresponding

to the metric ds2
6 it is convenient to choose the orthonormal frame as

ei =
rH1/2

f1/2

µi

H
1/2
i

dr + rH
1/2
i dµi

ẽi =
C

D
µi

H
1/2
i

∑

j

µ2
jdφj + rH

1/2
i µidφi

(5.6)

2Note that there is a typo in the sign of the second term in equation (2.8) in [23].
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One can then show that the metric can be written as

ds2
6 =

∑

i

(

ei ⊗ ei + ẽi ⊗ ẽi
)

(5.7)

provided that C satisfies

(C + r)2 = r2 + H−1 =
f

H (5.8)

In this frame, we find that J takes the conical form:

J = −
∑

i

ei ∧ ẽi (5.9)

It is possible to directly show that the relevant complex structure is integrable, which

completes a direct confirmation that the metric ds2
6 is indeed Kähler (of course this is all

guaranteed since the solutions of [23] are known to preserve 1/8 supersymmetry). As a

further check one can calculate the Ricci-form from the expression for P and, using the

expression for J , the Ricci scalar. One can then compare with the expression for the warp

factor and check that we have R = −8e−4A.

5.2 Type IIB AdS3 solutions

We now want to use the six-dimensional Kähler metrics coming from the three-charge

superstars to construct new AdS3 solutions. As stands it is not immediately obvious how

to do so since these metrics have Ricci curvature R < 0 whereas for AdS3 solutions we

need R > 0. Recall that in the equal charge case the two types of solution arose from

the same more general class of Kähler metrics with U(x) = 1 + a1x + a2x
2 + (a2

2/a1)x
3.

These had R = −8a1x
2. Rescaling the coordinate x we could set either a1 = −1 which led

to AdS3 solutions or a1 = 1 leading to superstar solutions. Clearly if we want to use the

three-charge superstar solutions to construct new AdS3 geometries we need to extend the

solutions by introducing the analogue of the a1 parameter.

This is easy to do simply by using the scale invariance of solutions. The condition

on the curvature (1.1) is clearly invariant under constant rescalings of the metric ds2
2n+2

(as are of course the Kähler conditions). We know that the metric (5.1) is Kähler and

satisfies (1.1) with Ricci scalar R = −DHr4. Thus, from the rescaling symmetry, λds2
6 is

also a solution. Now consider making the change of variables w = λr2 and defining new

parameters qi = λQi, so Hi = 1 + qi/w. The rescaled metric can then be written as

ds2
6 =

Y

4F
dw2 +

∑

i

(w + qi)(dµ2
i + µ2

i dφ2
i ) +

F − 1

Y

(

∑

i

µ2
i dφi

)2
(5.10)

where we have introduced

Y (w) =
∑

i

µ2
i (w + qi)

−1

F (w) = 1 + λw2
∏

i

(w + qi)
−1

(5.11)
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while the scalar curvature and P are given by

R = −8(F − 1)

w2Y

P =
2(F − 1)

wY

∑

i

µ2
i dφi

(5.12)

One notes the similarity in the parametrization with the form of the seven-dimensional

Sasaki-Einstein metrics given in [14]. Note also that the new scale factor parameter λ

appears only in F (w).

The original superstar solution corresponded to λ = 1 with R < 0. For the AdS3 we

instead take λ = −1 with R > 0. For the metric to be positive definite we need to choose

the range of w so that w + qi > 0. This implies that Y > 0 and F < 1 so that R > 0 as

required. Finally for the first term in (5.10) to be well-defined we also require F ≥ 0. This

can be achieved by choosing suitable values of q1 ≤ q2 ≤ q3 so that the cubic
∏

(w+qi)−w2

has three zeroes w1 < w2 < w3 and demanding that w1 ≤ w ≤ w2 with w1 > −q1. Given

that F − 1 < 0 it is not obvious that the metric is in fact positive definite. In the equal

charge case, it is straightforward to show that it in fact is. Rather than show it for the

general case, let us instead examine ds2(Y7):

ds2(Y7) = 1
4(dz + P )2 + e−4Ads2

6 (5.13)

=
F

4
dz2 +

1 − F

4w2F
dw2 +

1 − F

Y w2

∑

i

(w + qi)

[

dµ2
i + µ2

i

(

dφi −
wdz

2(w + qi)

)2
]

which is clearly positive definite.

To analyse the global structure of these metrics, we follow the approach of [14]. We

first observe that the metrics are co-homogeneity three with U(1)4 principle orbits which

will degenerate at various points. The four local isometries are generated by ∂z and ∂φi
.

Globally we would like to find combinations of these Killing vectors which generate compact

U(1) orbits.

From the form (5.13) we see there are degenerations at µi = 0 and also at F = 0.

For the former, the Killing vector whose length is vanishing is simply ∂φi
. It is easy to

see that for the metric to be smooth at µi = 0 we require φi to have period 2π. For

the degenerations at roots w = w1 and w = w2 of F the Killing vector whose length is

vanishing is given by

li = ci∂z + ci

∑

j

wi

2wi + 2qj
∂φj

, (5.14)

for i = 1, 2 and some constant ci. The requirement of regularity of the metric at these

points can found either by requiring that li is normalised so that corresponding surface

gravity κi is unity

κ2
i =

gµν∂µ(l2i )∂ν(l2i )

4l2i
(5.15)

or by direct inspection of the metric by introducing a coordinate corresponding to li. In

this case the latter is relatively straightforward and one finds that the constants ci must
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be given by

c−1
i = −1 +

∑

j

wi

2wi + 2qj
(5.16)

which is again very similar to the conditions in [14].

We now have found conditions arising from five different degenerations: the three

points µi = 0 together with w = w1 and w = w2. However, there are only four isometries

so there must be a relation of the form

pl1 + ql2 +
∑

j

rj∂φj
= 0 (5.17)

for some co-prime integers (p, q, ri). This then further restricts the parameters qi. Since

we can have U(1)2 degenerations when w = wi and µj = 0, we also require p and q are

separately coprime to each of the ri.

To ensure that we have a good solution of type IIB string theory we should also ensure

that the five-form is suitably quantised. We will leave a detailed analysis of this issue for

future work.

5.3 D = 11 four-charged superstars

Turning to solutions of D = 11 supergravity, we start by summarising the four-charged

superstar geometry as an example of a 1/8 BPS state with an S2 factor. In the next

subsection we then adapt the metric as in the previous discussion to give a new class of

AdS2 solutions.

We first put the solution into our standard bubble form (2.14) starting from the form

presented in [23]. We find, setting g = 1
2 in [23], that

e3A = DHr3

P =
2

r2DH
∑

i

µ2
i dφi

ds2
8 =

DHr

f
dr2 + 4r

∑

i

Hi

(

dµ2
i + µ2

i dφ2
i

)

+
4

DHr

(

∑

i

µ2
i dφi

)2

(5.18)

where for i = 1, . . . , 4

Hi = 1 +
Qi

r
(5.19)

and we have defined

H = H1H2H3H4

f = 1 + r2H

D =
∑

i

µ2
i

Hi
(5.20)

Furthermore the four-form flux3 takes the form (2.16) with

F = d
[

e3A(dt + P )
]

+ J (5.21)

3Note that there is a typo in the sign of the third term in equation (3.6) of [23].
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where

J = −2dr ∧
∑

µ2
i dφi − 2r

∑

Hid(µ2
i ) ∧ dφi (5.22)

which is clearly closed. To show that the metric ds2
8 is indeed Kähler with Kähler form

J , one can introduce an orthonormal frame in analogy with (5.6). Again, one could also

check that the corresponding curvature satisfies (1.1) and that R = −2e−3A.

5.4 D = 11 AdS2 solutions

As before we can use the rescaling symmetry of the Kähler metric defining the four-charged

superstar metric to obtain new D = 11 AdS2 solutions. The internal space for the AdS2

solutions we have already considered are analogous to the nine-dimensional Sasaki-Einstein

spaces constructed in [9]. The new AdS2 solutions we now consider are then analogous to

the nine-dimensional Sasaki-Einstein spaces considered in [14].

We define w = λr, rescale the metric by λ, define qi = λQi and introduce as before

Y (w) =
∑

i

µ2
i (w + qi)

−1

F (w) = 1 + λ2w2
∏

(w + qi)
−1

(5.23)

We then find that the rescaled metric is given by

ds2
8 =

Y

F
dw2 + 4

∑

i

(w + qi)(dµ2
i + µ2

i dφ2) +
4(F − 1)

Y

(

∑

i

µ2
i dφi

)2

(5.24)

with

R = −2(F − 1)

w2Y

P =
2(F − 1)

wY

∑

i

µ2
i dφi

In this form one immediately notes the similarity with the nine-dimensional Sasaki-Einstein

metrics in [14]. Note also that although to derive this form we rescaled by λ, in the final

expressions only λ2 appears.

For the AdS2 solutions we take λ2 = −1, with w + qi > 0 (which implies Y > 0 and

F < 1 so R > 0) and F ≥ 0. The metric on the internal manifold Y9 can then be written

as

ds2(Y9) = (dz + P )2 + e−3Ads2
8 (5.25)

= Fdz2 +
1 − F

w2F
dw2 +

4(1 − F )

Y w2

∑

i

(w + qi)

[

dµ2
i + µ2

i

(

dφi −
wdz

2(w + qi)

)2
]

Again this is clearly positive definite. In analogy to the type IIB solution we choose

q1 < q2 < q3 < q4 such that the quartic
∏

i(w + qi)−w2 has four roots w1 < w2 < w3 < w4

and require w2 ≤ w ≤ w3 with w3 > −q1.
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The regularity conditions follow in analogy with the IIB solution, though now the

principle orbits are U(1)5. For regularity at µi = 0 one is required to take φi to have

period 2π. The vanishing norm Killing vectors at w = w2 and w = w3 are given by

li = ci∂z + ci

∑

j

wi

2wi + 2qj
∂φj

, (5.26)

for i = 2, 3 and some constant ci. The requirement of regularity of the metric at these

points then imposes as before

c−1
i =

∑

j

wi

2wi + 2qj
− 1. (5.27)

We now have six different degenerations: the four points µi = 0 together with w = w1

and w = w2 but only five isometries. Hence we require a relation of the form

pl1 + ql2 +
∑

j

rj∂φj
= 0 (5.28)

for some co-prime integers (p, q, ri). This then further restricts that parameters qi. Since

we can have U(1)2 degenerations when w = wi and µj = 0, we also require p and q are

separately coprime to each of the ri.

To ensure that we have a good solution of M-theory we should also ensure that the

four-form is suitably quantised. We will leave a detailed analysis of this issue for future

work.

6. Product of Kahler-Einstein spaces

We now turn to a different construction of Kähler metrics ds2
2n+2 satisfying (1.1). We will

simply assume that it is locally the product of a set of two-dimensional Kähler-Einstein

metrics

ds2
2n+2 =

n+1
∑

i=1

ds2(KE
(i)
2 ) (6.1)

where ds2(KE
(i)
2 ) is a two-dimensional Kähler-Einstein metric, i.e. locally proportional to

the standard metric on S2, T 2 or H2. The Ricci form of ds2
2n+2 is given by

R =
n+1
∑

i=1

liJi (6.2)

where Ji are the Kähler forms of the ds2(KE
(i)
2 ) metrics and li is zero, positive or negative

depending on whether the metric is locally that on T 2, S2 or H2, respectively. We also

have P =
∑

i Pi with dPi = liJi (no sum on i).

Globally, we will usually assume that ds2
2n+2 extends to the metric on a space M2n+2

which is simply a product of two-dimensional Kähler-Einstein spaces M2n+2 = KE
(1)
2 ×· · ·×

KE
(n+1)
2 . In the corresponding type IIB solutions (n = 2) and D = 11 solutions (n = 3),
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one finds that the Killing spinors are independent of the coordinates on the KE
(i)
2 . This

means that the spaces KE
(i)
2 can be globally taken to be S2, T 2, H2 or a quotient H2/Γ,

the last giving a compact Riemann surface with genus greater than 1, while still preserving

supersymmetry.

Note that in the special case that two of the li are equal, say l1 = l2, the analysis also

covers the case when the product KE
(1)
2 × KE

(2)
2 is replaced with a more general four-

dimensional Kähler-Einstein manifold, KE4. Similar generalisations are possible if more

of the li are equal.

Finally, in order to solve equation (1.1) we must impose

n+1
∑

i=1

l2i =

(

n+1
∑

i=1

li

)2

(6.3)

We also note that the Ricci scalar is given by

R = 2

n+1
∑

i=1

li (6.4)

6.1 Type IIB AdS3 solutions

For the type IIB AdS3 case we have n = 2. The warp factor is

e−4A = 1
8R = 1

4 (l1 + l2 + l3) (6.5)

and the two form F which determines the five-form flux via (2.3) is given by

F =
1

2(l1 + l2 + l3)
[J1(l2 + l3) + J2(l1 + l3) + J3(l1 + l2)] (6.6)

The constraint (6.3) reads

l1l2 + l1l3 + l2l3 = 0 (6.7)

and we impose R > 0 to ensure that the warp factor is positive.

Let us analyse these constraints in more detail. Since we can permute the spaces KEi
2

we first order the parameters l1 ≤ l2 ≤ l3. We then observe that a rescaling of the six-

dimensional Kähler base space gives rise to the same D = 10 solution (up to rescaling of

the overall factor L in the ten-dimensional metric). Since R = 2(l1 + l2 + l3) > 0, we must

have l3 > 0 and hence we then rescale the metric ds2
6 so that l3 = 1. Solving (6.7) then

gives l2 = −l1/(l1 + 1). Requiring l1 ≤ l2 ≤ l3 gives a one parameter family of solutions

specified by

(l1, l2, l3) = (l1,−
l1

l1 + 1
, 1) (6.8)

with l1 ∈ [−1/2, 0].

– 21 –



J
H
E
P
0
4
(
2
0
0
7
)
0
0
5

Two equal li: it is interesting to look for special cases when two of the li are equal. As

mentioned earlier, in this case we can generalise the solution by replacing the two identical

KE2 factors by KE4. We find two cases. The first is when (l1, l2, l3) = (0, 0, 1) which gives

M6 = T 4 ×S2. This leads to the well known AdS3 ×S3 ×T 4 solution corresponding to the

near horizon geometry of two intersecting D3-branes.

The second and more interesting case is when (l1, l2, l3) = (−1/2, 1, 1) which gives

M6 = H2×KE+
4 , where KE+

4 is a positively curved Kähler-Einstein manifold. This means

KE+
4 is S2×S2, CP 2 or a del Pezzo dPk, k = 3, . . . , 8. It is convenient to rescale the metric

so that the H2 factor has l1 = −1 and hence (l1, l2, l3) = (−1, 2, 2). In the special case that

KE+
4 = CP 2, this is a solution first found by Naka that describe D3-branes wrapping a

holomorphic H2 in a Calabi-Yau four-fold [16].

The more general solutions with arbitrary KE+
4 were first given in [18]. Let us start

by rewriting the solution in a standard form. Rescaling the metric ds2(KE+
4 ) by a factor

of three so that R = 6JKE, the D = 10 solution then takes the form
√

3
2 ds2 = ds2(AdS3) + 3

4ds2(H2) + 9
4

[

ds2(KE+
4 ) + 1

9 (dz + P )2
]

3
4F =

(

−1
4

) [

−3
2JKE − 2 vol(H2)

]

.
(6.9)

The term in brackets in the first line is precisely the metric on a Sasaki-Einstein manifold,

fibered over H2 and with conventional normalization factors. To make the comparison

with [18] we first note that the conventions for the flux differ by a factor of −1/4. Setting

L2 = 2/
√

3 in (2.1) and (2.3), and rescaling ds2(KE+
4 ) again so that R = JKE, we see

that (6.9) is then exactly4 the same as that in section 6.1 of [18] (with d3 = 0). It was

observed in [18] that one also obtains globally well defined solutions for (at least some)

Sasaki-Einstein manifolds in the quasi-regular class, for which KE+
4 is an orbifold.

6.2 Type IIB bubbles

For the corresponding type IIB bubble solutions the warp factor is given by

e−4A = −1
8R = −1

4 (l1 + l2 + l3) (6.10)

and the expression for the two-form determining the five-form flux via (2.12) is as in (6.6).

For this case we need to impose (6.7) with R < 0 instead of R > 0. We find a one parameter

family of solutions specified by

(l1, l2, l3) =

(

−1, l1,
l1

l1 − 1

)

(6.11)

with l1 ∈ [0, 1/2].

It is again interesting to look for special cases when two of the li are equal. We find

two cases. The first is when (l1, l2, l3) = (−1, 0, 0) which gives M6 = T 4 ×H2. The second

and more interesting case is when (l1, l2, l3) = (−1,−1, 1
2) which gives M6 = S2 × KE−

4 .

For example one could take KE−
4 to be the four-dimesnional Bergmann metric.

4There is a difference in the sign of term proportional to JKE in the flux, but this corresponds to

redefining JKE → −JKE.
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6.3 D = 11 AdS2 solutions

For the D = 11 case we have n = 3. For AdS2 solutions the warp factor is given by

e−3A = 1
2R = l1 + l2 + l3 + l4 (6.12)

with R > 0. The two-form that determines the four-form flux via (2.8) is given by

F = −J1(l2 + l3 + l4) + J2(l1 + l3 + l4) + J3(l1 + l2 + l4) + J4(l1 + l2 + l3)

l1 + l2 + l3 + l4
(6.13)

Assuming l1 ≤ l2 ≤ l3 ≤ l4, R > 0 implies that l4 ≥ 0 and hence by rescaling we can

take l4 = 1. We find that there is now a two parameter family of solutions labeled by l1, l2
with

l3 = − l1l2 + l1 + l2
l1 + l2 + 1

, (6.14)

where the ranges of l1 and l2 are determined by the inequalities l1 ≤ l2 ≤ l3 ≤ 1.

Three equal li: first consider the case when three of the li are equal. One immediately

finds that there are a just two possibilities: The first is when (l1, l2, l3, l4) = (0, 0, 0, 1)

corresponding to M8 = T 6 × S2. This gives the well-known AdS2 × S3 × T 6 solution of

D = 11 supergravity that arises as the near horizon limit of two intersecting membranes.

The second is when (l1, l2, l3, l4) = (−1, 1, 1, 1) corresponding to M8 = KE+
6 × H2. In

the special case that we take KE+
6 to be a CP 3 we recover the solution of D = 11 super-

gravity corresponding to the near horizon limit of a membrane wrapping a holomorphic H2

embedded in a Calabi-Yau five-fold [17]. The existence of the more general solutions for

arbitrary KE+
6 was noted in a footnote in [18]. To put the solution in a standard form, we

normalise the metric on KE+
6 so that it has R = 8JKE so that the D = 11 solution then

takes the form

22/3ds2 = ds2(AdS2) + 2ds2(H2) + 16
[

ds2(KE+
6 ) + 1

16 (dz + P )2
]

2F = −
[

8JKE + 3vol(H2)
]

. (6.15)

Note that this has the same form as (6.9), with the terms in brackets in the first line giving

a Sasaki-Einstein metric, fibered over H2. In the special case that KE+
6 = CP 3 this agrees

with the solution in [17].

Two equal li: we next consider the case when two of the li are equal. It is easier to take

l1 = l2 and l3 ≤ l4 instead of l1 ≤ l2 ≤ l3 ≤ l4. We then note that if l1 = l2 = 0 we have

l3 = 0 and hence we have the T 6 × S2 solution discussed above. Otherwise we can always

rescale so l1 = l2 = ±1. This leads to two one-parameter families of solutions

(l1, l2, l3, l4) =

(

−1,−1, l3,
2l3 − 1

l3 − 2

)

l3 ∈ (2, 2 +
√

3]

(l1, l2, l3, l4) =

(

1, 1, l3,−
2l3 + 1

l3 + 2

)

l3 ∈ (−2,−2 +
√

3].

(6.16)

Note that these also contain the interesting solution (l1, l2, l3, l4) = (−1,−1, 2+
√

3, 2+
√

3)

corresponding to M8 = KE−
4 × KE+

4 .
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6.4 D = 11 Bubbles

For the corresponding D = 11 bubble solutions the warp factor is given by

e−3A = −1
2R = −(l1 + l2 + l3 + l4) (6.17)

and the expression for the two-form determining the five-form flux via (2.15) is as in (6.13).

If we now impose R < 0 instead of R > 0, we find a two parameter family of solutions

specified by

(l1, l2, l3, l4) =

(

−1, l2, l3,−
l1l2 − l1 − l2
l1 + l2 − 1

)

(6.18)

with −1 ≤ l2 ≤ l3 ≤ l4.

There are then two possibilities when three of the li are equal: the first is when

(l1, l2, l3, l4) = (0, 0, 0,−1) corresponding to M8 = T 6 × H2; the second is when

(l1, l2, l3, l4) = (−1,−1,−1, 1) corresponding to M8 = KE−
6 × S2.

We next consider the case when two of the li are equal. We now find the one parameter

family of solutions:

(

l1, l1,−
l1(l1 + 2)

2l1 + 1
, 1

)

, l1 ∈ [−2 −
√

3,−1]

(

l1, l1,−
l1(l1 − 2)

2l1 − 1
,−1

)

, l1 ∈ (−1, 2 −
√

3) (6.19)

In addition to the cases when three li are equal that we have already discussed, this

family also contains the interesting solution (−2 −
√

3,−2 −
√

3, 1, 1) corresponding to

M8 = KE−
4 × KE+

4 .

7. Conclusion

It is remarkable that the equations for a generic supersymmetric warped AdS3×Y7 solution

with F5 flux in type IIB and for a generic supersymmetric warped AdS2 ×Y9 solution with

electric flux in D = 11 supergravity are essentially the same [1, 2]. In each case the flux

and local geometry of Y2n+3 is fixed by choosing a Kähler metric ds2
2n+2 satisfying (1.1).

Such backgrounds can arise from the near-horizon back-reacted geometry around D3-

or M2-branes wrapped on a supersymmetric two-cycle. It is interesting to contrast these

solutions with the AdS5×SE5 and AdS4×SE7 solutions, where SE2n+1 is a Sasaki-Einstein

manifold, and which arise from unwrapped branes sitting at the apex of Ricci-flat Kähler

cones. Again, locally, SE2n+1 is determined by a choice of Kähler metric ds̃2
2n which in

this case is required to be Einstein. From this perspective, the construction of the wrapped

brane solutions is very similar, except that the second-order tensorial Einstein condition is

replaced by the fourth-order scalar condition (1.1) (together of course with flux which is

fixed by ds2
2n+2).

It was pointed out in [1, 2] that Kähler metrics satisfying (1.1) can also be used to

construct supersymmetric bubble solutions. In this paper we have discussed three con-

structions of such Kähler metrics that give rise to new AdS and bubble solutions. The
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first construction, discussed in sections 3 and 4, is inspired by the construction of Sasaki-

Einstein metrics in [8, 9]. In this case, the condition (1.1) could be integrated once, leaving

a third-order nonlinear differential equation (3.11) for a single function U(x). By restrict-

ing U(x) to be polynomial, for type IIB we reproduced the solutions given in [11]. For

D = 11 supergravity this led to a new one-parameter family of solutions. We also found

new non-compact AdS2 D = 11 solutions which can be interpreted as the duals of three-

dimensional CFTs coupled to defects. It would be interesting to know whether or not there

are interesting non-polynomial solutions to the differential equation (3.11).

The second construction of AdS solutions that we discussed in section 5 was found by

elucidating the Kähler geometry underlying superstar solutions. These new AdS solutions,

which generalise those of the first construction, are very analogous to the construction of

SE metrics in [14]. Recall that these SE metric give rise to toric Ricci-flat Kähler cones.

More generally, given that there are powerful techniques to study such toric cones, it will

be interesting to try and adapt these techniques to study toric AdS3 and AdS2 solutions

in the class of [1, 2].

It is interesting that the AdS3 solutions of [11], that we recovered here in section 3,

were also recently found from a different point of view in [27]. In that paper, an analysis

of a general class of supersymmetric AdS black holes of minimal gauged supergravity in

D = 5 was carried out. It seems likely that if one extended the analysis of [27] from

minimal gauged supergravity to include two vector multiplets, that one would recover the

new AdS3 solutions of section 5. Extending the speculations of [27], it is natural to wonder

if the solutions that we presented here in section 5 might describe the near horizon limit

of an asymptotically AdS5 × S5 black hole with horizon S1 × Y7.

The third construction of solutions that we studied was to assume that ds2
2n+2 is locally

a product of Kähler-Einstein metrics. This simple approach also leads to a rich class of

AdS and bubble solutions.

In this paper we have focused on demonstrating that the metrics in the new AdS

solutions are regular. It will be interesting to study the topology of the solutions and then

determine the additional constraints on the parameters required to ensure that the fluxes

are suitably quantised. It will then be straightforward to calculate the central charges

of the dual SCFTs. Of particular interest, is to identify the CFTs dual to the new AdS

solutions presented here. We expect that it will be most fruitful to focus on the type IIB

AdS3 solutions. The similarities of the construction of the type IIB AdS3 solutions with

AdS5 × SE5 solutions is suggestive that the dual CFTs are also closely related.
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A. Type IIB AdS3 from D = 11 AdS2 solutions

Consider a general D = 11 solution of the form (2.7)-(2.9) with an eight-dimensional Kähler

metric ds2(KE8) which is locally the product of a six-dimensional Kähler metric and the

flat metric on a torus

ds2(KE8) = ds2(KE6) + ds2(T 2) (A.1)

Assuming that globally in Y9 the flat metric extends to the metric on a torus T 2, we can

then dimensionally reduce to type IIA and then T-dualise to obtain a type IIB solution.

Using the formulae in, for example, appendix C of [18], we deduce that the type IIB metric

is given by

ds2 = e3A/2
[

ds2(AdS2) + (dx + A1)
2 + (dz + P )2 + e−3Ads2(M6)

]

(A.2)

with dA1 = − vol(AdS2). The first two-terms in the brackets are simply four times the

metric on a unit radius AdS3 and so after defining e3A = 1
4e4A′

we can write this in the

form

ds2 = 2e2A′

[

ds2(AdS3) + 1
4(dz + P )2 + e−4A′

ds2
6

]

(A.3)

This is exactly the form of (2.2) provided L2 = 2. Similarly, using the conventions of [18],

the five-form flux can be calculated and we find

−1
4F ′

5 = 4(1 + ∗) vol(AdS3) ∧
[

−1
8(e4A′R− 4J) − 1

8d(e4A′

) ∧ (dz + P )
]

(A.4)

which, given L2 = 2, agrees with (2.3) and (2.4) up to an overall difference in convention

F5 = −1
4F ′

5.
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[23] M. Cvetič et al., Embedding AdS black holes in ten and eleven dimensions, Nucl. Phys. B

558 (1999) 96 [hep-th/9903214].

[24] A. Buchel and J.T. Liu, Gauged supergravity from type-IIB string theory on Y (p, q)

manifolds, hep-th/0608002.

[25] L.J. Romans, Supersymmetric, cold and lukewarm black holes in cosmological

Einstein-Maxwell theory, Nucl. Phys. B 383 (1992) 395 [hep-th/9203018].

[26] J.P. Gauntlett, E.O. Colgain and O. Varela, Properties of some conformal field theories with

M-theory duals, JHEP 02 (2007) 049 [hep-th/0611219].

– 27 –

http://arxiv.org/abs/hep-th/0611065
http://arxiv.org/abs/hep-th/0612196
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C8%2C711
http://arxiv.org/abs/hep-th/0403002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=00203%2C8%2C987
http://arxiv.org/abs/hep-th/0403038
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C4%2C213
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD%2C4%2C213
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C97%2C171601
http://arxiv.org/abs/hep-th/0606221
http://jhep.sissa.it/stdsearch?paper=11%282001%29009
http://arxiv.org/abs/hep-th/0109127
http://jhep.sissa.it/stdsearch?paper=01%282002%29026
http://jhep.sissa.it/stdsearch?paper=01%282002%29026
http://arxiv.org/abs/hep-th/0111178
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C95%2C071101
http://arxiv.org/abs/hep-th/0504225
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB621%2C208
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB621%2C208
http://arxiv.org/abs/hep-th/0505027
http://arxiv.org/abs/hep-th/0206141
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD65%2C026003
http://arxiv.org/abs/hep-th/0105250
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD74%2C106007
http://arxiv.org/abs/hep-th/0608055
http://jhep.sissa.it/stdsearch?paper=05%282001%29008
http://arxiv.org/abs/hep-th/0011156
http://jhep.sissa.it/stdsearch?paper=06%282002%29025
http://arxiv.org/abs/hep-th/0204054
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB434%2C709
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB434%2C709
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB442%2C97
http://arxiv.org/abs/hep-th/9807187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB558%2C96
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB558%2C96
http://arxiv.org/abs/hep-th/9903214
http://arxiv.org/abs/hep-th/0608002
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB383%2C395
http://arxiv.org/abs/hep-th/9203018
http://jhep.sissa.it/stdsearch?paper=02%282007%29049
http://arxiv.org/abs/hep-th/0611219


J
H
E
P
0
4
(
2
0
0
7
)
0
0
5

[27] H.K. Kunduri, J. Lucietti and H.S. Reall, Do supersymmetric anti-de Sitter black rings

exist?, JHEP 02 (2007) 026 [hep-th/0611351].

– 28 –

http://jhep.sissa.it/stdsearch?paper=02%282007%29026
http://arxiv.org/abs/hep-th/0611351

